Q1.The table below shows data for the four hydrocarbons ethyne, propyne, propene and propane. ΔHc is the standard enthalpy of combustion of these hydrocarbons.

Compound	Name	M ,	−Δ <i>H</i> c → / kJ mol ⁻¹
HC≡CH	ethyne	26	1300
HC≡CCH₃	propyne	40	1940
H ₂ C=CHCH ₃	propene	42	2060
CH ₃ CH ₂ CH ₃	propane	44	2220

The complete combustion of 2.0 g of one of the above hydrocarbons releases exactly 100 kJ of heat energy.

This hydrocarbon is

- A ethyne
- B propyne
- **C** propene
- D propane

(Total 1 mark)

Q2.When 0.10 g of propane was burned the quantity of heat evolved was 5.0 kJ. The enthalpy of combustion of propane in kJ mol⁻¹ is

- **A** -800
- **B** -1500
- **c** –2200
- **D** –2900

Q3.This question is about the reaction given below.

$$CO(g) + H_2O(g) \implies CO_2(g) + H_2(g)$$

Enthalpy data for the reacting species are given in the table below.

Substance	CO(g)	H ₂ O(g)	CO ₂ (g)	H₂(g)
Δ <i>H</i> / kJ mol ⁻¹	-110	-242	-394	0

The standard enthalpy change for this reaction of carbon monoxide and steam is

- **A** +42 kJ mol⁻¹
- B −42 kJ mol⁻¹
- **C** +262 kJ mol⁻¹
- D –262 kJ mol⁻¹

(Total 1 mark)

Q4.Use the information below to answer this question.

$C(s) + O_2(g) \rightarrow CO_2(g)$	$\Delta H^{\bullet} = -394 \text{ kJ mol}^{-1}$
$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(I)$	Δ <i>H</i> = −286 kJ mol ⁻¹
$4C(s) + 5H_2(g) \rightarrow C_4H_{10}(g)$	$\Delta H^{\bullet} = -126 \text{ kJ mol}^{-1}$

The standard enthalpy of combustion of butane, in kJ mol⁻¹, is

A -2880

B –2590

C –806

D –554

Q5.Use the information below to answer this question.

$C(s) + O_2(g) \rightarrow CO_2(g)$	ΔH = -393.5 kJ mol ⁻¹
$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(I)$	$\Delta H^{\bullet} = -285.8 \text{ kJ mol}^{-1}$
$3C(s) + 4H_2(g) \rightarrow C_3H_8(g)$	Δ <i>H</i> = −104.0 kJ mol ⁻¹
$4C(s) + 5H_2(g) \rightarrow C_4H_{10}(g)$	Δ <i>H</i> = -125.2 kJ mol ⁻¹

The value in kJ mol $^{\mbox{\tiny -1}}$ of the enthalpy of thermal dissociation when but ane forms propane, hydrogen and carbon is

- A −26.3B −17.5
- **C** +17.5
- **C** +21.2

(Total 1 mark)

Q6.Use the information below to answer this question.

$C(s) + O_2(g) \rightarrow CO_2(g)$	Δ <i>H</i> = −393.5 kJ mol ⁻¹
$H_2(g) + \frac{1}{2}O_2(g) \rightarrow H_2O(I)$	$\Delta H = -285.8 \text{ kJ mol}^{-1}$
$3C(s) + 4H_2(g) \rightarrow C_3H_8(g)$	$\Delta H^{•}$ = -104.0 kJ mol ⁻¹
$4C(s) + 5H_{\scriptscriptstyle 2}(g) \to C_{\scriptscriptstyle 4}H_{\scriptscriptstyle 10}(g)$	$\Delta H^{\bullet} = -125.2 \text{ kJ mol}^{-1}$

The value in kJ mol⁻¹ for the enthalpy of combustion of propane is

- **A** –211.7
- **B** -419.7
- **C** –2220
- **C** –2878

Q7.The data below refer to the industrial production of nitric acid from ammonia.

Reaction 1
$$4NH_3(g) + 5O_2(g)$$
 $4NO(g) + 6H_2O(g)$ $\Delta H^{•} = -909 \text{ kJ mol}^{-1}$ Reaction 2 $2NO(g) + O_2(g)$ $2NO_2(g)$ $\Delta H^{•} = -115 \text{ kJ mol}^{-1}$ Reaction 3 $3NO_2(g) + H_2O(I)$ $2HNO_3(aq) + NO(g)$ $\Delta H^{•} = -117 \text{ kJ mol}^{-1}$

The direct oxidation of ammonia to nitrogen dioxide can be represented by the equation

$$4NH_3(g) + 7O_2(g) \rightarrow 4NO_2(g) + 6H_2O(g)$$

for which the standard enthalpy change, in kJ mol⁻¹, is

- **A** -1139
- **B** -1024
- **C** –794
- **D** -679

Q8.Using the information below, answer this question.

 $Fe_2O_3(s) + 3H_2(g) \rightarrow 2Fe(s) + 3H_2O(g) \quad \Delta H \stackrel{•}{=} +96 \text{ kJ mol}^{-1}, \ \Delta S \stackrel{\bullet}{=} +138 \text{ J } \text{K}^{-1} \text{ mol}^{-1}$ $Fe_2O_3(s) \qquad H_2(g) \qquad Fe(s)$

0	022.0	0	
Δ <i>H</i> r / kJ mol ⁻¹	-822.0	0	0
Δ 5 / J K ⁻¹ mol ⁻¹	90.0	131.0	27.0

The standard enthalpy of formation of steam is

- A +286 kJ mol⁻¹
- **B** +242 kJ mol⁻¹
- C −242 KJ mol⁻¹
- D –286 kJ mol⁻¹

(Total 1 mark)

Q9. Using the data below, which is the correct value for the standard enthalpy of formation for TiCl₄(I)?

$C(s) + TiO_2(s) + 2CI_2(g) \rightarrow TiCI_4(I) + CO_2(g)$	ΔH = −232 kJ mol ⁻¹
$Ti(s) + O_2(g) \rightarrow TiO_2(s)$	$\Delta H_{\mathbf{f}}^{\mathbf{P}} = -912 \text{ kJ mol}^{-1}$
$C(s) + O_2(g) \rightarrow CO_2(g)$	$\Delta H_{\rm f}^{\rm e}$ = -394 kJ mol ⁻¹
A −1538 kJ mol ⁻¹	

B –1094 kJ mol⁻¹

C −750 kJ mol⁻¹

D +286 kJ mol⁻¹

Q10.When ethanamide (CH₃CONH₂) burns in oxygen the carbon is converted into carbon dioxide, the hydrogen is converted into water and the nitrogen forms nitrogen gas.

Substance	ethanamide	carbon dioxide	water
Enthalpy of formation ($\Delta H^{m{ au}}$) / kJ mol $^{-1}$	-320	-394	-286

Using the data above, which one of the following is a correct value for the enthalpy of combustion of ethanamide?

- A −1823 kJ mol⁻¹
- B −1183 kJ mol⁻¹
- **C** –1000 kJ mol⁻¹
- **D** -360 kJ mo1⁻¹

(Total 1 mark)

- **Q11.**In which one of the following reactions is the standard enthalpy change equal to the standard enthalpy of formation of lithium fluoride?
 - A $Li(g) + F(g) \rightarrow LiF(s)$
 - **B** $Li^{\dagger}(g) + F^{-}(g) \rightarrow LiF(s)$
 - **C** $Li^{+}(aq) + F^{-}(g) \rightarrow LiF(s)$
 - **D** Li(s) + $\frac{1}{2}F_2(g) \rightarrow \text{LiF}(s)$

Q12.Consider the reactions

$$C_{2}H_{4}(g) + 2O_{2}(g) \rightarrow 2CO(g) + 2H_{2}O(g) \qquad \qquad \Delta H^{\bigoplus} = -758 \text{ kJ mol}^{-1}$$

$$2C(s) + 2H_{2}(g) \rightarrow C_{2}H_{4}(g) \qquad \qquad \Delta H^{\bigoplus} = +52 \text{ kJ mol}^{-1}$$

$$H_{2}(g) + \frac{1}{2} O_{2}(g) \rightarrow H_{2}O(g) \qquad \qquad \Delta H^{\bigoplus} = -242 \text{ kJ mol}^{-1}$$

The enthalpy of formation of carbon monoxide is

- A –111 kJ mol⁻¹
- B −163 kJ mol⁻¹
- C −222 kJ mol⁻¹
- **D** -464 kJ mol⁻¹

(Total 1 mark)

Q13. Given the following data

$C(s) + 2H_2(g) \rightarrow CH_4(g)$	<i>∆H</i> = −75 kJ mol ⁻¹	
$H_2(g) \rightarrow 2H(g)$	<i>ΔH</i> = +436 kJ mol ⁻¹	

which one of the following is the enthalpy change, in kJ mol⁻¹, of the reaction below?

$CH_4(g) \rightarrow C(s) + 4H(g)$	
-947	
+511	

C +797

Α

В

D +947

Q14.Nitric acid is produced industrially from ammonia, air and water using the following sequence of reactions:

(1)	$4NH_3(g) + 5O_2(g) \rightarrow 4NO(g) + 6H_2O(g)$	$\Delta H = -909 \text{ kJ mol}^{-1}$
(2)	$2NO(g) + O_2(g) \rightarrow 2NO_2(g)$	$\Delta H = -115 \text{ kJ mol}^{-1}$
(3)	$3NO_2(g) + H_2O(I) \rightarrow 2HNO_3(aq) + NO(g)$	Δ <i>H</i> = –117 kJ mol ⁻¹

Which is the enthalpy change (in kJ mol⁻¹) for the following reaction?

 $4NH_3(g) + 7O_2(g) \rightarrow 4NO_2(g) + 6H_2O(g)$

- **A** -679
- **B** −794
- **C** -1024
- **D** -1139